Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-1105 MSA-1105 >6V Fixed Gain, High Dynamic Range Amplifier

Description

Lifecycle status: Active

Features

The MSA-11 is a high dynamic range 50ohm gain block targeted for narrow and wide bandwidth IF amplifier applications up to 4GHz. It is offered in a wide variety of plastic and ceramic packages. Bias: 8V, 60mA; f3dB = 1.6GHz; G = 12.5dB; NF = 3.5dB; P1dB = 17.5dBm; IP3i = 5dBm.

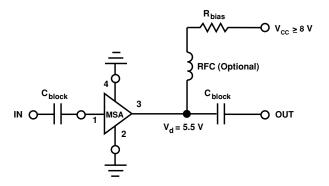
MSA-1105 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-1105 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for high dynamic range in either 50 or 75 Ω systems by combining low noise figure with high IP₃. Typical applications include narrow and broadband linear amplifiers in commercial and industrial systems.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- High Dynamic Range Cascadable 50 Ω or 75 Ω Gain Block
- 3 dB Bandwidth: 50 MHz to 1.3 GHz
- 17.5 dBm Typical P_{1 dB} at 0.5 GHz
- 3.6 dB Typical Noise Figure at 0.5 GHz
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

05 Plastic Package

Typical Biasing Configuration

MSA-1105 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	80 mA	
Power Dissipation ^[2,3]	550 mW	
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature	-65 to 150°C	

Thermal Resistance^[2]:

 $\theta_{ic} = 125^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C$. 3. Derate at 8 mW/°C for $T_C > 124^{\circ}C$.

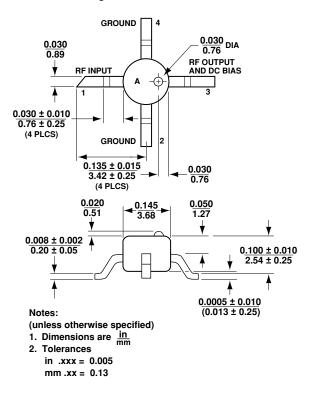
Symbol	Parameters and Test Conditions: I_d = 60 mA, Z_0 = 50 Ω		Units	Min.	Тур.	Max.
Gp	Power Gain (S ₂₁ ²)	r Gain ($ S_{21} ^2$) f = 0.05 GHz dB	dB		12.7	
		f = 0.5 GHz	dB	10.0	12.0	
		f = 1.0 GHz	dB		10.5	
$\Delta {\sf G}_{\sf P}$	Gain Flatness	f = 0.1 to 1.0 GHz	dB		±1.0	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		1.3	
VSWR —	Input VSWR	f = 0.1 to 1.0 GHz			1.5:1	
	Output VSWR	f = 0.1 to 1.0 GHz			1.7:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.6	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		17.5	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		30.0	
t _D	Group Delay	f = 0.5 GHz	psec		200	
V _d	Device Voltage		V	4.4	5.5	6.6
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Notes:

1. The recommended operating current range for this device is 40 to 70 mA.

Typical performance as a function of current is on the following page.


2. Referenced from 50 MHz gain (GP).

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-1105-STR	10	Bulk
MSA-1105-STRG	100	Bulk
MSA-1105-TR1	500	7" Reel
MSA-1105-TR1G	500	7" Reel
MSA-1105-TR2	1500	13" Reel
MSA-1105-TR2G	1500	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

05 Plastic Package Dimensions

